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Why Rotating Leader BFT Protocols?

2.

e Censorship resistance.

e Uniform distribution of work.

e Fairness. A . A
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ABSTRACT

We present the Internet Computer Consensus (ICC) family of pro-
tocols for atomic broadcast (a.k.a., consensus), which underpin
the Byzantine fault-tolerant replicated state machines of the In-
ternet Computer. The ICC protocols are leader-based protocols
that assume partial synchrony, and that are fully integrated with
a blockchain. The leader changes probabilistically in every round.
These protocols are simple and robust: in any round where the
leader is corrupt (which itself happens with probability less than
1/3) or the network is asynchronous, each ICC protocol will effec-
tively allow other parties to step in and propose blocks for that
round and to move the protocol forward to the next round. In case
there was no agreement on a single block in a round, a decision
for this round will be taken in a later round with synchronous
network behavior and an honest leader. The task of reliably dissem-
inating the blocks to all parties is an integral part the protocol. We
present three different protocols, along with various minor vari-
ations on each. The first of these protocols (ICCO) illustrates the
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1 INTRODUCTION

Byzantine fault tolerance (BFT) is the ability of a computing system
to endure arbitrary (i.e., Byzantine) failures of some of its compo-
nents while still functioning properly as a whole. One approach to
achieving BFT is via state machine replication [33]: the logic of the
system is replicated across a number of machines, each of which
maintains state, and updates its state is by executing a sequence
of commands. In order to ensure that the non-faulty machines end
up in the same state, they must each deterministically execute the
same sequence of commands. This is achieved by using a protocol
for atomic broadcast [9, 16, 33].
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Rule: Commit when (n - p)
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Fast path. Commit when n - p

Banyan - Recap (p

notarization signatures received

Slow path: ICC + new rule:
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Unlocked Block: Will not conflict with fast path
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5.81% improvement
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Main Takeaways

a»
1. Banyanisfaster than state-of-the-art
(optimistically)

2. Banyanis never slower than ICC m
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